Login / Signup

Design, Synthesis, and Biological Evaluation of Dual-Target Inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 9A (PDE9A) for the Treatment of Alzheimer's Disease.

Jinhui HuYa-Dan HuangTingting PanTianhua ZhangTao SuXingshu LiHai-Bin LuoLing Huang
Published in: ACS chemical neuroscience (2018)
A series of dual-target AChE/PDE9A inhibitor compounds were designed, synthesized, and evaluated as anti-Alzheimer's Disease (AD) agents. Among these target compounds, 11a (AChE: IC50 = 0.048 μM; PDE9A: IC50 = 0.530 μM) and 11b (AChE: IC50 = 0.223 μM; PDE9A: IC50 = 0.285 μM) exhibited excellent and balanced dual-target AChE/PDE9A inhibitory activities. Meanwhile, those two compounds possess good blood-brain barrier (BBB) penetrability and low neurotoxicity. Especially, 11a and 11b could ameliorate learning deficits induced by scopolamine (Scop). Moreover, 11a could also improve cognitive and spatial memory in Aβ25-35-induced cognitive deficit mice in the Morris water-maze test. In summary, our research developed a series of potential dual-target AChE/PDE9A inhibitors, and the data indicated that 11a was a promising candidate drug for the treatment of AD.
Keyphrases
  • blood brain barrier
  • traumatic brain injury
  • metabolic syndrome
  • high glucose
  • skeletal muscle
  • climate change
  • insulin resistance
  • drug induced
  • combination therapy