Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM.
Rosaria CercolaKaitlyn C FischerSummer L ShermanEtienne GarandNatalie G K WongL Anders HammerbackJason M LynamIan J S FairlambCaroline E H DessentPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
PhotoCORMs are light-triggered compounds that release CO for medical applications. Here, we apply laser spectroscopy in the gas phase to TryptoCORM, a known photoCORM that has been shown to destroy Escherichia coli upon visible-light activation. Our experiments allow us to map TryptoCORM's photochemistry across a wide wavelength range by using novel laser-interfaced mass spectrometry (LIMS). LIMS provides the intrinsic absorption spectrum of the photoCORM along with the production spectra of all of its ionic photoproducts for the first time. Importantly, the photoproduct spectra directly reveal the optimum wavelengths for maximizing CO ejection, and the extent to which CO ejection is compromised at redder wavelengths. A series of comparative studies were performed on TryptoCORM-CH3 CN which exists in dynamic equilibrium with TryptoCORM in solution. Our measurements allow us to conclude that the presence of the labile CH3 CN facilitates CO release over a wider wavelength range. This work demonstrates the potential of LIMS as a new methodology for assessing active agent release (e.g. CO, NO, H2 S) from light-activated prodrugs.
Keyphrases
- visible light
- escherichia coli
- mass spectrometry
- lymph node metastasis
- high resolution
- solid state
- healthcare
- room temperature
- density functional theory
- high speed
- liquid chromatography
- ionic liquid
- molecular dynamics
- squamous cell carcinoma
- single cell
- gene expression
- pseudomonas aeruginosa
- high performance liquid chromatography
- biofilm formation
- gas chromatography
- multidrug resistant
- ms ms
- candida albicans
- tandem mass spectrometry
- simultaneous determination