Sirtuin 1-activating derivatives belonging to the anilinopyridine class displaying in vivo cardioprotective activities.
Giulia BononiValentina CitiAlma MartelliGiulio PoliTiziano TuccinardiCarlotta GranchiLara TestaiVincenzo CalderoneFilippo MinutoloPublished in: RSC medicinal chemistry (2023)
Sirtuin 1 (SIRT1) is an enzyme that relies on NAD + cofactor and functions as a deacetylase. It has been associated with various biological and pathological processes, including cancer, diabetes, and cardiovascular diseases. Recent studies have shown that compounds that activate SIRT1 exhibit protective effects on the heart. Consequently, targeting SIRT1 has emerged as a viable approach to treat cardiovascular diseases, leading to the identification of several SIRT1 activators derived from natural or synthetic sources. In this study, we developed anilinopyridine-based SIRT1 activators that displayed significantly greater potency in activating SIRT1 compared to the reference compound resveratrol, as demonstrated in enzymatic assays. In particular, compounds 8 and 10, representative 6-aryl-2-anilinopyridine derivatives from this series, were further investigated pharmacologically and found to reduce myocardial damage caused by occlusion and subsequent reperfusion in vivo , confirming their cardioprotective properties. Notably, the cardioprotective effects of 8 and 10 were significantly superior to that of resveratrol. Significantly, compound 10 emerged as the most potent among the tested compounds, demonstrating the ability to substantially decrease the size of the ischemic area at a dosage one hundred times lower (0.1 mg kg -1 ) than that of resveratrol/compound 1. These promising findings open avenues for expanding and optimizing this chemical class of potent SIRT1 activators as potential agents for cardioprotection.
Keyphrases
- oxidative stress
- ischemia reperfusion injury
- cardiovascular disease
- type diabetes
- squamous cell carcinoma
- left ventricular
- acute myocardial infarction
- minimally invasive
- risk assessment
- atrial fibrillation
- mass spectrometry
- papillary thyroid
- adipose tissue
- drinking water
- drug delivery
- metabolic syndrome
- young adults
- climate change
- cardiovascular risk factors
- percutaneous coronary intervention
- atomic force microscopy
- glycemic control
- lymph node metastasis