Polyacrylic Acid Functionalized Co0.85Se Nanoparticles: An Ultrasmall pH-Responsive Nanocarrier for Synergistic Photothermal-Chemo Treatment of Cancer.
Yan MaXianwen WangHuajian ChenZhaohua MiaoGang HeJunhong ZhouZhengbao ZhaPublished in: ACS biomaterials science & engineering (2018)
To surmount the challenges of limited drug penetration and therapeutic resistance in solid tumors, stimuli-responsive nanocarrier-based drug delivery systems (DDSs) with relatively small sizes are inherently favorable for combined treatment of cancerous cells. In this work, poly(acrylic acid) (PAA) functionalized Co0.85Se nanoparticles (PAA-Co0.85Se NPs) were synthesized through an ambient aqueous precipitating approach for synergistic photothermal-chemo treatment of cancer. The obtained PAA-Co0.85Se NPs possess ultrasmall size (8.2 ± 2.6 nm), considerable near-infrared (NIR) light absorption, high photothermal transforming efficiency (45.2%) and low cytotoxicity, all of which are beneficial for localized photothermal ablation of cancer cells. Doxorubicin hydrochloride (DOX·HCl) was then successfully loaded on PAA-Co0.85Se NPs with a loading capacity up to 8.3% to form PAA-Co0.85Se-DOX composites, which exhibited an exciting acidic pH-responsive drug release property due to the protonation of amino groups in DOX and carboxyl groups in PAA molecules. As expected, when HeLa cells were treated with PAA-Co0.85Se-DOX NPs as well as NIR laser irradiation, a significant synergistic cell-killing effect was observed, greatly improving the treatment efficiency. Thus, this work presents novel insight into the design of ultrasmall stimuli-responsive nanocarrier-based DDSs for synergistic photothermal-chemo treatment of cancer cells.
Keyphrases
- cancer therapy
- drug delivery
- photodynamic therapy
- drug release
- emergency department
- cell cycle arrest
- combination therapy
- squamous cell carcinoma
- induced apoptosis
- oxidative stress
- mass spectrometry
- air pollution
- ionic liquid
- fluorescence imaging
- atrial fibrillation
- signaling pathway
- radiation induced
- papillary thyroid
- tandem mass spectrometry
- smoking cessation