Login / Signup

The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor.

Zhong Jie DingChen XuJing Ying YanYu Xuan WangMeng Qi CuiJun Jie YuanYa Nan WangGui Xin LiJiangxiang WuYun Rong WuJi Ming XuChun Xiao LiYuan Zhi ShiChuan-Zao MaoJiang Tao GuoJian-Min ZhouMoussa BenhamedNicholas P HarberdShao Jian Zheng
Published in: Cell research (2024)
Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.
Keyphrases