Login / Signup

Vapor-phase linker exchange of metal-organic frameworks.

Wufeng WuJingyi SuMiaomiao JiaZhanjun LiGuoqiang LiuWanbin Li
Published in: Science advances (2020)
Metal-organic frameworks (MOFs) have been attracting intensive attention because of their commendable potential in many applications. Postsynthetic modification for redesigning chemical characteristics and pore structures can greatly improve performance and expand functionality of MOF materials. Here, we develop a versatile vapor-phase linker exchange (VPLE) methodology for MOF modification. Through solvent-free and environment-friendly VPLE processing, various linker analogs with functional groups but not for straightforward MOF crystallization are inserted into frameworks as daughter building blocks. Besides single exchange for preparing MOFs with dual linkers, VPLE can further be performed by multistage operations to obtain MOF materials with multiple linkers and functional groups. The halogen-incorporated ZIFs exhibit good porosity, tunable molecular affinity, and impressive CO2/N2 and CH4/N2 adsorption selectivities up to 31.1 and 10.8, respectively, which are two to six times higher than those of conventional adsorbents. Moreover, VPLE can substantially enhance the compatibility of MOFs and polymers.
Keyphrases
  • metal organic framework
  • working memory
  • high resolution
  • molecular docking
  • risk assessment
  • climate change
  • low cost
  • solar cells