Login / Signup

Programming Protein Polymerization with DNA.

Janet R McMillanOliver G HayesJonathan P RemisChad Alexander Mirkin
Published in: Journal of the American Chemical Society (2018)
A strategy that utilizes DNA for controlling the association pathway of proteins is described. This strategy uses sequence-specific DNA interactions to program energy barriers for polymerization, allowing for either step-growth or chain-growth pathways to be accessed. Two sets of mutant green fluorescent protein (mGFP)-DNA monomers with single DNA modifications have been synthesized and characterized. Depending on the deliberately controlled sequence and conformation of the appended DNA, these monomers can be polymerized through either a step-growth or chain-growth pathway. Cryo-electron microscopy with Volta phase plate technology enables the visualization of the distribution of the oligomer and polymer products, and even the small mGFP-DNA monomers. Whereas cyclic and linear polymer distributions were observed for the step-growth DNA design, in the case of the chain-growth system linear chains exclusively were observed, and a dependence of the chain length on the concentration of the initiator strand was noted. Importantly, the chain-growth system possesses a living character whereby chains can be extended with the addition of fresh monomer. This work represents an important and early example of mechanistic control over protein assembly, thereby establishing a robust methodology for synthesizing oligomeric and polymeric protein-based materials with exceptional control over architecture.
Keyphrases
  • circulating tumor
  • cell free
  • single molecule
  • electron microscopy
  • nucleic acid
  • binding protein
  • circulating tumor cells
  • cancer therapy
  • quantum dots
  • liquid chromatography