Login / Signup

Representing, learning, and controlling complex object interactions.

Yilun ZhouBenjamin BurchfielGeorge Konidaris
Published in: Autonomous robots (2018)
We present a framework for representing scenarios with complex object interactions, where a robot cannot directly interact with the object it wishes to control and must instead influence it via intermediate objects. For instance, a robot learning to drive a car can only change the car's pose indirectly via the steering wheel, and must represent and reason about the relationship between its own grippers and the steering wheel, and the relationship between the steering wheel and the car. We formalize these interactions as chains and graphs of Markov decision processes (MDPs) and show how such models can be learned from data. We also consider how they can be controlled given known or learned dynamics. We show that our complex model can be collapsed into a single MDP and solved to find an optimal policy for the combined system. Since the resulting MDP may be very large, we also introduce a planning algorithm that efficiently produces a potentially suboptimal policy. We apply these models to two systems in which a robot uses learning from demonstration to achieve indirect control: playing a computer game using a joystick, and using a hot water dispenser to heat a cup of water.
Keyphrases
  • working memory
  • public health
  • healthcare
  • deep learning
  • mental health
  • machine learning
  • climate change
  • heat stress
  • decision making