Login / Signup

Integrated reconstructive spectrometer with programmable photonic circuits.

Chunhui YaoKangning XuWanlu ZhangMinjia ChenQixiang ChengRichard Penty
Published in: Nature communications (2023)
Optical spectroscopic sensors are a powerful tool to reveal light-matter interactions in many fields. Miniaturizing the currently bulky spectrometers has become imperative for the wide range of applications that demand in situ or even in vitro characterization systems, a field that is growing rapidly. In this paper, we propose a novel integrated reconstructive spectrometer with programmable photonic circuits by simply using a few engineered MZI elements. This design effectively creates an exponentially scalable number of uncorrelated sampling channels over an ultra-broad bandwidth without incurring additional hardware costs, enabling ultra-high resolution down to single-digit picometers. Experimentally, we implement an on-chip spectrometer with a 6-stage cascaded MZI structure and demonstrate <10 pm resolution with >200 nm bandwidth using only 729 sampling channels. This achieves a bandwidth-to-resolution ratio of over 20,000, which is, to our best knowledge, about one order of magnitude greater than any reported miniaturized spectrometers to date.
Keyphrases