Login / Signup

Development of New Antimicrobial Agents from Cationic PG-Surfactants Containing Oligo-Lys Peptides.

Ryosuke KimuraMasahide ShibataShuhei KoedaAtsushi MiyagawaHatsuo YamamuraToshihisa Mizuno
Published in: Bioconjugate chemistry (2018)
Peptide gemini-surfactant (PG-surfactant), a kind of lipopeptide, is composed of a short linker peptide (X) between two alkyl-chain-modified Cys residues and peripheral peptides at the N-terminal (Y) and the C-terminal (Z) sides, respectively, of the alkylated Cys residues. In this study, we developed and examined a series of PG-surfactants containing two C12 saturated alkanes and oligo-Lys, arranged at the X-, Y-, or Z-positions. To arrange oligo-Lys at the Y- or Z-positions, a repeat sequence of -Asp-Lys-Asp-Lys- was used at the X-position. All of the PG-surfactants exhibited high antimicrobial activity against both Gram-positive and -negative bacteria. In addition to high antimicrobial activity, a low hemolysis activity is prerequisite for efficient intravenous administration. Among the synthesized PG-surfactants, those having -(Lys)3- at the Y- or Z-positions, i.e. K3-DKDKC12 and DKDKC12K3, showed reasonably low hemolytic activities. This combination of high antimicrobial activity along with low hemolytic activity is an essential and unique property and has not been previously reported for the synthesized lipopeptides. Further, using scanning electron microscopy (SEM) and N-phenyl-1-naphthylamine (NPN) uptake assay we showed that the antimicrobial activity of these PG-surfactants may be attributed to membrane disruptive mechanisms. Although the PG-surfactants with low hemolytic activity could interact and localize onto red blood cell surfaces and cause slight expansion of cell morphologies, no subsequent penetration occurred. In summary, we describe here the successful development of PG-surfactants having high antibacterial and low hemolytic activity, thus providing a significant molecular platform to develop novel antimicrobial agents.
Keyphrases
  • red blood cell
  • electron microscopy
  • staphylococcus aureus
  • stem cells
  • high resolution
  • amino acid
  • mesenchymal stem cells
  • cell therapy