Login / Signup

Evaluating the prebiotic effect of oligosaccharides on gut microbiome wellness using in vitro fecal fermentation.

Dong Hyeon LeeHyunbin SeongDaniel ChangVinod K GuptaJiseung KimSeongwon CheonGeonhee KimJaeyun SungNam Soo Han
Published in: NPJ science of food (2023)
We previously proposed the Gut Microbiome Wellness Index (GMWI), a predictor of disease presence based on a gut microbiome taxonomic profile. As an application of this index for food science research, we applied GMWI as a quantitative tool for measuring the prebiotic effect of oligosaccharides. Mainly, in an in vitro anaerobic batch fermentation system, fructooligosaccharides (FOS), galactooligosaccharides (GOS), xylooligosaccharides (XOS), inulin (IN), and 2'-fucosyllactose (2FL), were mixed separately with fecal samples obtained from healthy adult volunteers. To find out how 24 h prebiotic fermentation influenced the GMWI values in their respective microbial communities, changes in species-level relative abundances were analyzed in the five prebiotics groups, as well as in two control groups (no substrate addition at 0 h and for 24 h). The GMWI of fecal microbiomes treated with any of the five prebiotics (IN (0.48 ± 0.06) > FOS (0.47 ± 0.03) > XOS (0.33 ± 0.02) > GOS (0.26 ± 0.02) > 2FL (0.16 ± 0.06)) were positive, which indicates an increase of relative abundances of microbial species previously found to be associated with a healthy, disease-free state. In contrast, the GMWI of samples without substrate addition for 24 h (-0.60 ± 0.05) reflected a non-healthy, disease-harboring microbiome state. Compared to the original prebiotic index (PI) and α-diversity metrics, GMWI provides a more data-driven, evidence-based indexing system for evaluating the prebiotic effect of food components. This study demonstrates how GMWI can be applied as a novel PI in dietary intervention studies, with wider implications for designing personalized diets based on their impact on gut microbiome wellness.
Keyphrases
  • microbial community
  • saccharomyces cerevisiae
  • public health
  • magnetic resonance
  • weight loss
  • preterm infants
  • magnetic resonance imaging
  • young adults
  • human milk
  • mass spectrometry
  • heavy metals