Login / Signup

Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts.

Xiaona ZhaoXiao-Li ZhouSi-Yu YangYuan MinJie-Jie ChenXian-Wei Liu
Published in: Nature communications (2022)
Studying the localized electrocatalytic activity of heterogeneous electrocatalysts is crucial for understanding electrocatalytic reactions and further improving their performance. However, correlating the electrocatalytic activity with the microscopic structure of two-dimensional (2D) electrocatalysts remains a great challenge due to the lack of in situ imaging techniques and methods of tuning structures with atomic precision. Here, we present a general method of probing the layer-dependent electrocatalytic activity of 2D materials in situ using a plasmonic imaging technique. Unlike the existing methods, this approach was used to visualize the surface charge density and electrocatalytic activity of single 2D MoS 2 nanosheets, enabling the correlation of layer-dependent electrocatalytic activity with the surface charge density of single MoS 2 nanosheets. This work provides insights into the electrocatalytic mechanisms of 2D transition metal dichalcogenides, and our approach can serve as a promising platform for investigating electrocatalytic reactions at the heterogeneous interface, thus guiding the rational design of high-performance electrocatalysts.
Keyphrases
  • reduced graphene oxide
  • metal organic framework
  • transition metal
  • gold nanoparticles
  • high resolution
  • quantum dots
  • single molecule
  • highly efficient
  • high throughput
  • mass spectrometry
  • room temperature