Natural transition orbitals for complex two-component excited state calculations.
Joseph M KasperXiaosong LiPublished in: Journal of computational chemistry (2020)
While the natural transition orbital (NTO) method has allowed electronic excitations from time-dependent Hartree-Fock and density functional theory to be viewed in a traditional orbital picture, the extension to multicomponent molecular orbitals such as those used in relativistic two-component methods or generalized Hartree-Fock (GHF) or generalized Kohn-Sham (GKS) is less straightforward due to mixing of spin-components and the inherent inclusion of spin-flip transitions in time-dependent GHF/GKS. An extension of single-component NTOs to the two-component framework is presented, in addition to a brief discussion of the practical aspects of visualizing two-component complex orbitals. Unlike the single-component analog, the method explicitly describes the spin and frequently obtains solutions with several significant orbital pairs. The method is presented using calculations on a mercury atom and a CrO2 Cl2 complex.