Login / Signup

Assessment of intestinal macromolecular absorption in young piglets to pave the way to oral vaccination: preliminary results.

Brodie DelucoHeather Lynne Wilson
Published in: Veterinary research communications (2021)
The small intestine of the piglet has evolved to be permeable immediately after birth to facilitate the uptake of colostrum-derived immunoglobulins as well as other macromolecules, and cells. However, the precise timing of gut closure in today's precocious pig is not known. We gavaged piglets immediately after birth and at 1-h after birth with Cy5-labeled Ovalbumin (Cy5-Ova) then harvested their small intestine's 6-7 h later. To assess localization of Cy5-Ova in the small intestinal epithelial cells, we performed immunohistochemistry using a basolateral surface marker and a recycling endosome marker called pIgR, the late endosomal marker Rab7, and the lysosomal marker LAMP-1. Cy5-Ova co-localized with Rab7 and LAMP-1 in the duodenum and jejunum of 0-h old and 1-h old gavaged piglets, but only in the ileum of 0-h gavaged piglets. These data suggest that movement of Cy5-Ova through the late endosomes to the lysosomes was much reduced in the ileum of 1-h gavaged piglets. Cy5-Ova was largely present in epithelial cell digestive and transport vacuoles, but it did not colocalize with pIgR-positive endosomes in 0-h and 1-h gavaged piglets. Differences in macromolecular uptake across the different regions of the small intestine after only 1-h may be due to prior processing of colostral macromolecules, changes in the intestine due to initiation of colonization by microflora and/or the initiation of gut-closure. Understanding the relationship between the localization of Cy5-Ova and small intestinal permeability may contribute to establishing whether oral vaccination in the newborn can capitalize on the transient permeability before gut closure to promote immune protection.
Keyphrases
  • induced apoptosis
  • endothelial cells
  • machine learning
  • oxidative stress
  • pregnant women
  • signaling pathway
  • cell cycle arrest
  • artificial intelligence
  • preterm birth
  • pi k akt