Login / Signup

Controlling crystal growth of MIL-100(Fe) on Ag nanowire surface for optimizing catalytic performance.

Xi ChenYanshuang ZhangXiangyun KongZanru GuoWenyuan XuZhili FangShaohui WangLingzhi LiuYongxin LiuJiali Zhang
Published in: RSC advances (2020)
Ag/MIL-100(Fe) core/sheath nanowire with controllable thickness of the MIL-100(Fe) sheath was prepared by controlling the crystal growth of MIL-100(Fe) on the Ag nanowire surface. The evolution of the MIL-100(Fe) sheath monitored by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analyses (TGA), X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FT-IR), and N 2 adsorption-desorption analysis indicates that the thickness of the MIL-100(Fe) sheath increases with the increasing number of crystal growth cycles of MIL-100(Fe) on the Ag nanowire surface. Catalytic reaction over Ag/MIL-100(Fe) core/sheath nanowire suggests that the thickness of the MIL-100(Fe) sheath largely influences the catalytic performance and it is quite important to control the crystal growth of MIL-100(Fe) on the Ag nanowire surface for optimizing catalytic performance.
Keyphrases