Modular Tensor Diagram Approach for the Construction of Spin Eigenfunctions: The Case Study of Exciton Pair States.
Guohua TaoYunshu TanPublished in: The journal of physical chemistry. A (2020)
Mapping out the high-dimensional state space would be valuable for better understanding the multistate quantum systems. Here, we demonstrate that high-dimensional spin state space can be mapped onto a tensor diagram in full dimension or self-similarly onto the reduced base state space. Based on the tensor diagram, a modular approach is proposed to construct spin eigenfunctions taking the basis of the lower-dimensional space as modules. The implementation of the approach on exciton pair states results in 16 spin eigenstates including 2 singlet states, 3 triplet states, and 1 quintet state with proper symmetry, in contrast to the ones generated using the conventional branching diagram method. The corresponding state energies obtained show the order of spin eigenstates reverses with respect to spin multiplicity. Interestingly, the state space can be decomposed into three subspaces corresponding to the singlet-singlet pair, singlet-triplet pair, and triplet-triplet pair, resulting in a modular structure that is invariant as intermolecular interactions diminish. The proposed approach offers a new perspective on the state space structure of multiple spin states, featuring a hierarchical symmetry, which could be extended to general high-dimensional quantum multistate systems.