Login / Signup

The Impact of Two Combined Oral Contraceptives Containing Ethinyl Estradiol and Drospirenone on Whole Blood Clot Viscoelasticity and the Biophysical and Biochemical Characteristics of Erythrocytes.

Odette EmmersonJanette BesterBarend G LindequeAlbe Carina Swanepoel
Published in: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada (2019)
Venous thrombosis is associated with combined oral contraceptive (COC) use. We investigated the impact of two ethinyl estradiol (EE) and drospirenone (DRSP) containing COCs (3 mg DRSP/20 µg EE and 3 µg DRSP/30 µg EE) on the viscoelasticity of whole blood clots along with the biophysical and biochemical characteristics of erythrocytes. Thromboelastography (TEG) analysis showed a tendency toward a hypercoagulable state in the COCs groups that was more pronounced with higher EE concentrations. Light microscopy and scanning electron microscopy (SEM) showed rouleaux formation of erythrocytes and alterations to the erythrocyte shape for both COC groups, which was attributed to membrane damage. SEM analysis showed spontaneous activation of fibrin and platelets in the COC groups, along with interactions between erythrocytes and platelets and/or fibrin. Confocal microscopy confirmed compromised membrane integrity in the COC groups compared to controls. Global thrombosis test analysis showed increased platelet activation and low thrombolysis in both COC groups when compared to controls. In conclusion, DRSP/EE formulations impact erythrocytes' biophysical and biochemical properties to cause a shift in hemostasis to a prothrombotic state. Although these effects are mostly subclinical the long-term effects and risks involved with the use of these hormones should be considered carefully for each individual.
Keyphrases
  • electron microscopy
  • pulmonary embolism
  • high resolution
  • risk assessment
  • estrogen receptor
  • mass spectrometry
  • climate change
  • optical coherence tomography
  • single cell