Highly Stable Silver Nanowires/Biomaterial Transparent Electrodes for Flexible Electronics.
Yue QinLanqian YaoFangbo ZhangRuiqing LiYujie ChenYuehua ChenTao ChengWen-Yong LaiBaoxiu MiXinwen ZhangKaiwei HuangPublished in: ACS applied materials & interfaces (2022)
Flexible transparent electrodes (FTEs) possess excellent optoelectrical properties, mechanical robustness, and environmental adaptability are important for the industrial scale development of flexible electronics. Silver nanowires (AgNWs) are widely used in FTEs owing to their excellent optoelectrical properties and mechanical flexibility. However, the high surface roughness and poor stability of AgNWs FTEs still limit their practical applications. Here, highly stable FTEs are demonstrated via combining AgNWs and biomaterial propolis which is eco-friendly and antioxidative. The AgNWs/propolis composite transparent electrodes exhibit excellent optoelectrical performance as well as a smooth surface (root-mean-square roughness ∼ 6.2 nm). Meanwhile, the composite electrodes possess high mechanical stability (10,000 bending cycles), thermal stability, and environmental adaptability (60 °C and 85 ± 3% humidity for 700 h). The versatile composite FTEs show great potential applications in organic light-emitting diodes and pressure sensors, which exhibit high performance, mechanical stability, and environmental adaptability. Our strategy of introducing biocompatible materials into metallic nanowires opens up new possibilities to achieve high-quality FTEs in a simple and eco-friendly way.