Login / Signup

Development of functionally relevant potency assays for monovalent and multivalent vaccines delivered by evolving technologies.

Gautam Sanyal
Published in: NPJ vaccines (2022)
A potency or potency-indicating assay is a regulatory requirement for the release of every lot of a vaccine. Potency is a critical quality attribute that is also monitored as a stability indicator of a vaccine product. In essence, a potency measurement is a test of the functional integrity of the antigen and is intended to ensure that the antigen retains immunocompetence, i.e., the ability to stimulate the desired immune response, in its final formulation. Despite its central importance, there is incomplete clarity about the definition and expectation of a potency assay. This article provides a perspective on the purpose, value, and challenges associated with potency testing for vaccines produced by new technologies. The focus is on messenger RNA vaccines in the light of experience gained with recombinant protein-based vaccines, which offer the opportunity to directly correlate in vitro antigenicity with in vivo immunogenicity. The challenges with developing immunologically relevant in vitro assays are discussed especially for multivalent vaccine products, the importance of which has been reinforced by the ongoing emergence of SARS-CoV-2 variants of concern. Immunoassay-based release of multivalent vaccine products, such as those containing multiple antigens from different variants or serotypes of the same virus, require antibodies that are selective for each antigen and do not significantly cross-react with the others. In the absence of such exclusively specific antibodies, alternative functional assays with demonstrable correlation to immunogenicity may be acceptable. Initiatives for geographically distributed vaccine technology facilities should include establishing these assay capabilities to enable rapid delivery of vaccines globally.
Keyphrases
  • high throughput
  • sars cov
  • immune response
  • copy number
  • dendritic cells
  • drug delivery
  • gene expression
  • single cell
  • quality improvement
  • toll like receptor
  • dna methylation
  • inflammatory response
  • nucleic acid