Login / Signup

Generic Orbital Design of Higher-Order Topological Quasicrystalline Insulators with Odd Five-Fold Rotation Symmetry.

Huaqing HuangJiahao FanDexin LiFeng Liu
Published in: Nano letters (2021)
In addition to crystals, topological phases in quasicrystals and disorder systems have drawn increasing attention lately. Here, we propose a generic double band-inversion mechanism underlying the higher-order topological phase in quasicrystals, that is.,"higher-order topological quasicrystalline insulator" (HOTQI), which exploits local atomic orbital and lattice symmetries. It is generally applicable to both quasicrystals and crystals with either odd-rotational (OR) or even-rotational symmetry (ERS), different from previous HOTI mechanisms whose applicability is limited by symmetry types. The HOTQI is characterized by topological corner states at the nonordinary corners of pentagonal (octagonal) samples of five-fold (eight-fold) quasicrystals, which violate the translational invariance and ordinary crystalline symmetries. The role of quasicrystalline symmetry, the robustness against symmetry breaking, and possible experimental realizations are discussed. Our findings not only provide a concrete example of HOTQIs that is incompatible with classical crystallographic symmetry but also offer useful guidance to the search of higher-order topological materials and metamaterials.
Keyphrases
  • room temperature
  • working memory
  • magnetic resonance imaging
  • computed tomography
  • magnetic resonance
  • ionic liquid