Login / Signup

The effect of feedback delay on perceptual category learning and item memory: Further limits of multiple systems.

Rachel G StephensMichael L Kalish
Published in: Journal of experimental psychology. Learning, memory, and cognition (2018)
Delayed feedback during categorization training has been hypothesized to differentially affect 2 systems that underlie learning for rule-based (RB) or information-integration (II) structures. We tested an alternative possibility: that II learning requires more precise item representations than RB learning, and so is harmed more by a delay interval filled with a confusable mask. Experiments 1 and 2 examined the effect of feedback delay on memory for RB and II exemplars, both without and with concurrent categorization training. Without the training, II items were indeed more difficult to recognize than RB items, but there was no detectable effect of delay on item memory. In contrast, with concurrent categorization training, there were effects of both category structure and delayed feedback on item memory, which were related to corresponding changes in category learning. However, we did not observe the critical selective impact of delay on II classification performance that has been shown previously. Our own results were also confirmed in a follow-up study (Experiment 3) involving only categorization training. The selective influence of feedback delay on II learning appears to be contingent on the relative size of subgroups of high-performing participants, and in fact does not support that RB and II category learning are qualitatively different. We conclude that a key part of successfully solving perceptual categorization problems is developing more precise item representations, which can be impaired by delayed feedback during training. More important, the evidence for multiple systems of category learning is even weaker than previously proposed. (PsycINFO Database Record
Keyphrases
  • working memory
  • virtual reality
  • mental health
  • psychometric properties
  • healthcare
  • squamous cell carcinoma
  • magnetic resonance
  • high resolution
  • deep learning
  • social media
  • locally advanced