Login / Signup

DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging.

Shaocheng LiuJingyi WuMan HeBeibei ChenQi KangYan XuXiao YinBin Hu
Published in: ACS applied materials & interfaces (2021)
Heterogeneous immunoassay based on magnetic separation is commonly used in inductively coupled plasma-mass spectrometry (ICP-MS)-based biomedical analysis with elemental labeling. However, the functionalized magnetic beads (MBs) often suffer from non-specific adsorption and random distribution of the functional probes. To overcome these problems, DNA tetrahedron (DT)-functionalized MBs were designed and further conjugated with substrate modified Au NPs (Sub-AuNP). Based on the prepared MB-DT-AuNP probes, an MB-DT based multicomponent nucleic acid enzyme (MNAzyme) system involving Au NPs as the elemental tags was proposed for highly sensitive quantification of miRNA-155 by ICP-MS. Target miRNA would trigger the assembly of MNAzyme, and Sub-AuNP would be cleaved from the MB-DT-AuNP probe, resulting in a cyclic amplification. Single-stranded DNA-functionalized MB (MB-ssDNA)-AuNP probes were prepared as well. Comparatively, the amount of Au NPs grafted onto MB-ssDNA-AuNP probes was higher than that grafted onto MB-DT-AuNP probes. Meanwhile, a higher signal-to-noise ratio was obtained by using MB-DT-AuNP probes over MB-ssDNA-AuNP probes in the MNAzyme system. Under the optimal experimental conditions, the limit of detection for target miRNA obtained by using MB-DT-AuNP probes was 1.15 pmol L-1, improved by 23 times over that obtained by the use of MB-ssDNA-AuNP probes. The proposed MB-DT-MNAzyme-ICP-MS method was applied to the analysis of miRNA-155 in serum samples, and recoveries of 86.7-94.6% were obtained. This method is featured with high sensitivity, good specificity, and simple operation, showing a great application potential in biomedical analysis.
Keyphrases