Disruption of the network between Onuf's nucleus and myenteric ganglia, and developing Hirschsprung-like disease following spinal subarachnoid haemorrhage: an experimental study.
Ozgur CaglarBinali FirinciMehmet Dumlu AydinErdem KaradenizAli AhıskalıoğluSare Altas SipalMurat YigiterAhmet Bedii SalmanPublished in: The International journal of neuroscience (2019)
Purpose/Aim of the study: Auerbach/Meissner network of lower abdominopelvic organs managed by parasympathetic nerve fibres of lumbosacral roots arising from Onuf's nucleus located in conus medullaris. Aim of this study is to evaluate if there is any relationship between Onuf's nucleus ischemia and Auerbach/Meissner network degeneration following spinal subarachnoid haemorrhage (SAH). Materials and Methods: Study was conducted on 24 male rabbits included control (Group I, n = 5), serum saline-SHAM (Group II, n = 5), and spinal SAH (Group III, n = 14) groups. Spinal SAH performed by injecting homologous blood into subarachnoid space at Th12-L4 level and followed three weeks. Live and degenerated neuron densities of Onuf's nucleus, Auerbach and Meissner ganglia (n/mm3) were determined by Stereological methods. Results: The mean degenerated neuron density of Onuf's nucleus was significantly higher in Group III than in Groups I-II (152 ± 26, 2 ± 1 and 5 ± 2/mm3 respectively, p < 0.005). The degenerated neuron density of Auerbach's ganglia was significantly higher in Group III than in Groups I-II (365 ± 112, 3 ± 1 and 9 ± 3/mm3 respectively, p < 0.005). The degenerated neuron density of Meissner's ganglia was significantly higher in Group III than in Groups I-II (413 ± 132, 2 ± 1 and 11 ± 4/mm3 respectively, p < 0.005). Conclusions: Onuf's nucleus pathologies should be considered as Auerbach/Meissner ganglia degeneration and also related Hirschsprung-like diseases in the future.