Login / Signup

Polymer-prodrug conjugates as candidates for degradable, long-acting implants, releasing the water-soluble nucleoside reverse-transcriptase inhibitor emtricitabine.

Chung LiuFaye Y HernAnika ShakilKartik TemburnikarPierre ChambonNeill J LiptrottTom O McDonaldMegan NearyCharles FlexnerAndrew OwenCaren Freel MeyersSteven P Rannard
Published in: Journal of materials chemistry. B (2023)
Circulating, soluble polymer-drug conjugates have been utilised for many years to aid the delivery of sensitive, poorly-soluble or cytotoxic drugs, prolong circulation times or minimise side effects. Long-acting therapeutics are increasing in their healthcare importance, with intramuscular and subcutaneous administration of liquid formulations being most common. Degradable implants also offer opportunities and the use of polymer-prodrug conjugates as implant materials has not been widely reported in this context. Here, the potential for polymer-prodrug conjugates of the water soluble nucleoside reverse transciption inhibitor emtricitabine (FTC) is studied. A novel diol monomer scaffold, allowing variation of prodrug substitution, has been used to form polyesters and polycarbonates by step-growth polymerisation. Materials have been screened for physical properties that enable implant formation, studied for drug release to provide mechanistic insights, and tunable prolonged release of FTC has been demonstrated over a period of at least two weeks under relevant physiological conditions.
Keyphrases