Functional Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Delivered by Canine Histiocytic Sarcoma Cells Persistently Infected with Engineered Attenuated Canine Distemper Virus.
Katarzyna MarekFederico ArmandoThanaporn AsawapattanakulVanessa Maria NippoldPhilippe PlattetGisa GeroldWolfgang BaumgärtnerChristina PuffPublished in: Pathogens (Basel, Switzerland) (2023)
The immune response plays a key role in the treatment of malignant tumors. One important molecule promoting humoral and cellular immunity is granulocyte-macrophage colony-stimulating factor (GM-CSF). Numerous successful trials have led to the approval of this immune-stimulating molecule for cancer therapy. However, besides immune stimulation, GM-CSF may also accelerate tumor cell proliferation, rendering this molecule a double-edged sword in cancer treatment. Therefore, detailed knowledge about the in vitro function of GM-CSF produced by infected tumor cells is urgently needed prior to investigations in an in vivo model. The aim of the present study was to functionally characterize a persistent infection of canine histiocytic sarcoma cells (DH82 cells) with the canine distemper virus strain Onderstepoort genetically engineered to express canine GM-CSF (CDV-Ond neon-GM-CSF ). The investigations aimed (1) to prove the overall functionality of the virally induced production of GM-CSF and (2) to determine the effect of GM-CSF on the proliferation and motility of canine HS cells. Infected cells consistently produced high amounts of active, pH-stable GM-CSF, as demonstrated by increased proliferation of HeLa cells. By contrast, DH82 cells lacked increased proliferation and motility. The significantly increased secretion of GM-CSF by persistently CDV-Ond neon-GM-CSF -infected DH82 cells, the pH stability of this protein, and the lack of detrimental effects on DH82 cells renders this virus strain an interesting candidate for future studies aiming to enhance the oncolytic properties of CDV for the treatment of canine histiocytic sarcomas.