In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2-Based Energy Storage Devices.
Tsung-Chun TsaiGuan-Min HuangChun-Wei HuangJui-Yuan ChenChih-Chieh YangTseung-Yuen TsengWen-Wei WuPublished in: Analytical chemistry (2017)
Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation-delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO2 layer caused structural defects on the CNTs surface that could allow penetration of Li+ and Mn4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.