Login / Signup

MOF-Assisted Synthesis of Highly Mesoporous Cr2O3/SiO2 Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions.

Fengfeng ChenKui ShenYitao YangHaigen HuangYingwei Li
Published in: ACS applied materials & interfaces (2020)
The facile fabrication of porous solid acids is highly desired for replacing hazardous liquid acids for many acid-catalyzed reactions in the industry. Herein, we present a bottom-up strategy to construct ultrastable mesoporous Cr2O3/SiO2 nanohybrids (denoted as Meso-Cr-Si-O) with highly dispersed Lewis acid sites by pyrolysis of a SiO2@MIL-101 precursor prepared via nanocasting by a reverse double-solvent approach, which can guarantee the efficient encapsulation of SiO2 nanoparticles (NPs) inside the MIL-101 pores. The pore environment of Meso-Cr-Si-O can be well tuned by simply controlling the amount of silica within the MIL-101 pores and the pyrolysis temperature. Pyridine adsorption experiments demonstrate that the density of Lewis acidic sites in the obtained Meso-Cr-Si-O is much higher than that of MIL-101-derived Cr2O3 NPs. Benefitting from its highly mesoporous nanostructure with abundant acid sites, the optimal Meso-Cr-Si-O exhibits a significantly improved catalytic activity for the Lewis-acid-catalyzed Meerwein-Ponndorf-Verley reduction of cyclohexanone with 4.5 times higher yield of cyclohexanol than that of the MIL-101-derived Cr2O3 NPs, representing the first efficient Cr2O3-based catalytic system for this reaction.
Keyphrases
  • metal organic framework
  • room temperature
  • ionic liquid
  • solid phase extraction
  • highly efficient
  • mass spectrometry
  • high resolution