Sustainable Bio-Based UV-Cured Epoxy Vitrimer from Castor Oil.
Matteo BergoglioDavid ReisingerSandra SchlöglThomas GriesserMarco SangermanoPublished in: Polymers (2023)
Vitrimers brought new properties in thermosets by allowing their reshaping, self-healing, reprocessing, and network rearrangement without changing structural integrity. In this study, epoxidized castor oil (ECO) was successfully used for the straightforward synthesis of a bio-based solvent-free vitrimer. The synthesis was based on a UV-curing process, which proceeded at low temperatures in the absence of any solvents, and within a short time. Real time Fourier-transformed infrared spectroscopy and photo-DSC were exploited to monitor the cationic photocurable process. The UV-cured polymer networks were able to efficiently undergo thermo-activated bond exchange reactions due to the presence of dibutyl phosphate as a transesterification catalyst. Mechanical properties, thermal resistance, glass transition temperature, and stress relaxation were investigated as a function of the amount of transesterification catalyst. Mechanical properties were determined by both DMTA and tensile tests. Glass transition temperature ( T g ) was evaluated by DMTA. Thermal stability was assessed by thermogravimetric analysis, whilst vitrimeric properties were studied by stress relaxation experiments. Overall, the ECO-based vitrimer showed high thermal resistance (up to 200 °C) and good mechanical properties (elastic modulus of about 10 MPa) and can therefore be considered as a promising starting point for obtaining more sustainable vitrimers.