Login / Signup

A Tale of Two Isomers: Enhanced Antiaromaticity/Diradical Character versus Deleterious Ring-Opening of Benzofuran-fused s-Indacenes and Dicyclopenta[b,g]naphthalenes.

Joshua E BarkerTavis W PriceLucas José KarasRyohei KishiSamantha N MacMillanLev N ZakharovCarlos J Gómez-GarcíaJudy I-Chia WuMasayoshi NakanoMichael M Haley
Published in: Angewandte Chemie (International ed. in English) (2021)
We examine the effects of fusing two benzofurans to s-indacene (indacenodibenzofurans, IDBFs) and dicyclopenta[b,g]naphthalene (indenoindenodibenzofurans, IIDBFs) to control the strong antiaromaticity and diradical character of these core units. Synthesis via 3-functionalized benzofuran yields syn-IDBF and syn-IIDBF. syn-IDBF possesses a high degree of paratropicity, exceeding that of the parent hydrocarbon, which in turn results in strong diradical character for syn-IIDBF. In the case of the anti-isomers, synthesized via 2-substituted benzofurans, these effects are decreased; however, both derivatives undergo an unexpected ring-opening reaction during the final dearomatization step. All the results are compared to the benzothiophene-fused analogues and show that the increased electronegativity of oxygen in the syn-fused derivatives leads to enhancement of the antiaromatic core causing greater paratropicity. For syn-IIDBF increased diradical character results from rearomati-zation of the core naphthalene unit in order to relieve this paratropicity.
Keyphrases
  • molecular docking
  • quantum dots
  • fluorescent probe
  • living cells