Controllable Fabrication of PdO-PdAu Ternary Hollow Shells: Synergistic Acceleration of H 2 -Sensing Speed via Morphology Regulation and Electronic Structure Modulation.
Qian LiShuang YangXingyu LuTieqiang WangXue-Min ZhangYu FuWei QiPublished in: Small (Weinheim an der Bergstrasse, Germany) (2022)
Designing ultrafast H 2 sensors is of particular importance for practical applications of hydrogen energy but still quite challenging. Herein, PdO decorated PdAu ternary hollow shells (PdO-PdAu HSs) exhibiting an ultrafast response of ≈0.9 s to 1% H 2 in air at room temperature are presented. PdO-PdAu HSs are fabricated by calcinating PdAu bimetallic HSs in air to form PdO-Au binary HSs, which are then partially reduced by NaBH 4 solution, forming PdO-PdAu HSs. This ternary hybrid material takes advantage of multiple aspects to synergistically accelerate the sensing speed. The HS morphology promises high gas accessibility and high surface area for H 2 adsorption, and decoration of Au and PdO alters the electronic state of Pd and reduces the energy barrier for hydrogen diffusing from the surface site of Pd into the subsurface site. The content of Au and PdO in the ternary HSs can be simply tuned, which offers the possibility to optimize their promotion effects to reach the best performance. The proposed fabrication strategy sheds light on the rational design of ultrafast Pd-based H 2 sensors by controlling the sensor structure and engineering the electronic state of active species.