Login / Signup

Cost-Driven Design of Printed Wideband Antennas with Reduced Silver Ink Consumption for the Internet of Things.

Nicolas ClausJo VerhaevertHendrik Rogier
Published in: Sensors (Basel, Switzerland) (2022)
The Internet of Things (IoT) accelerates the need for compact, lightweight and low-cost antennas combining wideband operation with a high integration potential. Although screen printing is excellently suited for manufacturing conformal antennas on a flexible substrate, its application is typically limited due to the expensive nature of conductive inks. This paper investigates how the production cost of a flexible coplanar waveguide (CPW)-fed planar monopole antenna can be reduced by exploiting a mesh-based method for limiting ink consumption. Prototypes with mesh grids of different line widths and densities were screen-printed on a polyethylene terephthalate (PET) foil using silver-based nanoparticle ink. Smaller line widths decrease antenna gain and efficiency, while denser mesh grids better approximate unmeshed antenna behavior, albeit at the expense of greater ink consumption. A meshed prototype of 34.76×58.03mm with almost 80% ink reduction compared to an unmeshed counterpart is presented. It is capable of providing wideband coverage in the IMT/LTE-1/n1 (1.92-2.17 GHz), LTE-40/n40 (2.3-2.4 GHz), 2.45 GHz ISM (2.4-2.4835 GHz), IMT-E/LTE-7/n7 (2.5-2.69 GHz), and n78 5G (3.3-3.8 GHz) frequency bands. It exhibits a peak radiation efficiency above 90% and a metallized surface area of 2.46 cm 2 (yielding an ink-to-total-surface ratio of 12.2%).
Keyphrases
  • low cost
  • gold nanoparticles
  • computed tomography
  • health information
  • energy transfer
  • healthcare
  • radiation therapy
  • positron emission tomography
  • risk assessment
  • silver nanoparticles
  • structural basis