Login / Signup

Studying the small extracellular vesicle capture efficiency of magnetic beads coated with tannic acid.

Nikita A GrishaevEkaterina O MoiseevaVasiliy S ChernyshevAleksei S KomlevAnton M NovoselovAlexey M Yashchenok
Published in: Journal of materials chemistry. B (2024)
The isolation of small extracellular vesicles (sEVs), including those secreted by pathological cells, with high efficiency and purity is highly demanded for research studies and practical applications. Conventional sEV isolation methods suffer from low yield, presence of contaminants, long-term operation and high costs. Bead-assisted platforms are considered to be effective for trapping sEVs with high recovery yield and sufficient purity for further molecular profiling. In this study, magnetically responsive beads made of calcium carbonate (CaCO 3 ) particles impregnated with iron oxide (Fe 3 O 4 ) nanoparticles are fabricated using a freezing-induced loading (FIL) method. The developed magnetic beads demonstrate sufficient magnetization and can be collected by a permanent magnet, ensuring their rapid and gentle capture from an aqueous solution. The tannic acid on the surface of magnetic beads is formed by a layer-by-layer (LbL) method and is used to induce coupling of sEVs with the surface of magnetic beads. These tannic acid coated magnetic beads (TAMB) were applied to capture sEVs derived from MCF7 and HCT116 cell lines. Quantitative data derived from nanoparticle tracking analysis (NTA) and BCA methods revealed the capture efficiency and recovery yield of about 60%. High-resolution transmission electron microscopy (HRTEM) imaging of sEVs on the surface of TAMBs indicated their structural integrity. Compared with the size exclusion chromatography (SEC) method, the proposed approach demonstrated comparable efficiency in terms of recovery yield and purity, while offering a relatively short operation time. These results highlight the high potential of the TAMB approach for the enrichment of sEVs from biological fluids, such as cell culture media.
Keyphrases