First Proof-of-Principle of PolyJet 3D Printing on Textile Fabrics.
Tomasz KoziorAndrea EhrmannPublished in: Polymers (2023)
Possibilities of direct 3D printing on textile fabrics have been investigated with increasing intensity during the last decade, leading to composites which can combine the positive properties of both parts, i.e., the fast production and lateral strength of textile fabrics with the flexural strength and point-wise definable properties of 3D printed parts. These experiments, however, were mostly performed using fused deposition modeling (FDM), which is an inexpensive and broadly available technique, but which suffers from the high viscosity of the molten polymers, often impeding a form-locking connection between polymer and textile fibers. One study reported stereolithography (SLA) to be usable for direct printing on textile fabrics, but this technique suffers from the problem that the textile material is completely soaked in resin during 3D printing. Combining the advantages of FDM (material application only at defined positions) and SLA (low-viscous resin which can easily flow into a textile fabric) is possible with PolyJet modeling (PJM) printing. Here, we report the first proof-of-principle of PolyJet printing on textile fabrics. We show that PJM printing with a common resin on different textile fabrics leads to adhesion forces according to DIN 53530 in the range of 30-35 N, which is comparable with the best adhesion forces yet reported for fused deposition modeling (FDM) printing with rigid polymers on textile fabrics.