Login / Signup

Methane to Methanol Conversion Facilitated by Anionic Transition Metal Centers: The Case of Fe, Ni, Pd, and Pt.

Safaa SaderEvangelos Miliordos
Published in: The journal of physical chemistry. A (2021)
Density functional theory and high-level ab initio electronic structure calculations are performed to study the mechanism of the partial oxidation of methane to methanol facilitated by the titled anionic transition metal atoms. The energy landscape for the overall reaction M- + N2O + CH4 → M- + N2 + CH3OH (M = Fe, Ni, Pd, Pt) is constructed for different reaction pathways for all four metals. The comparison with earlier experimental and theoretical results for cationic centers demonstrates the better performance of the metal anions. The main advantage is that anionic centers interact weakly with the produced methanol. This fact facilitates the fast removal of methanol from the catalytic center and prevents the overoxidation of methane. Moreover, a moderate or high energy barrier for the M- + CH4 → HMCH3- reaction step is observed, which protects the metal center from deactivation. Future work should focus on the identification of proper ligands, which stabilize the negative charge on the metal (electronic factors) and prevent the formation of the global CH3MOH- minimum (steric factors). Finally, a composite electronic structure method (combining size extensive coupled clusters approaches and accurate multireference configuration interaction) is proposed for computationally demanding systems and is applied to Fe-.
Keyphrases