Aspergillus niger trehalase enzyme induced morphological and protein alterations on Acanthamoeba cyst and molecular docking studies.
Fatimah HashimSiti Aisyah RazaliNyuk-Ling MaNurhidayana M RasedNor F A C MohamadF Nur Syakinah NafisaA AzilaHazlina Ahamad ZakeriPublished in: Journal of parasitic diseases : official organ of the Indian Society for Parasitology (2021)
The cytotoxicity of Acanthamoeba is yet to fully illustrate due to recalcitrant of Acanthamoeba during cyst stage. The formation of the trehalose layer at the cyst stage protects the inner components of this opportunist protozoan parasite. Trehalase from the Aspergillus niger (AnTre) activity on the cyst of Acanthamoeba was determined based on AnTre dose-response, morphological and protein changes. The interaction of the AnTre and trehalose was also visualized through docking simulation. Vacuolation of the cyst can be seen when observed under light microscopy. Membrane integrity assessment suggested possible hydrolization of the AnTre enzyme to trehalose membranes which based on acridine orange and propidium iodide staining. Surface morphology based on scanning electron microscopy revealed the formation of bulging structure that was also proved through cross sectioning observed by transmission electron microscopy. Loss of internal structure of the cysts was clearly observed. Other morphological distinction where loss of rigid shape due to the destruction of the endo- and ecto cyst layers. However, the protein profile exhibits change of trehalose layer as responses to AnTre treatment. The observed biological results were also supported by interaction simulation based on molecular docking between trehalose and AnTre enzyme. In conclusion, this enzymatic approach could be developed into selective and effective mechanism to control Acanthamoeba without affecting the host especially mammals due to the absence of trehalose elements in the tissues of mammals.
Keyphrases