Login / Signup

Reducing stress concentration on the cup rim of hip implants under edge loading.

Mohammad Sharif UddinGi Wing Constance Chan
Published in: International journal for numerical methods in biomedical engineering (2018)
High stress concentration under edge loading on the cup rim contact due to micro-separation causes accelerated striping wear, fracture, and fatigue in hip implant components. While continuous effort is devoted into improving bearing design and surgical procedure to tackle the problem, the concern still has remained forcing biomedical engineers to seek for new and alternative solutions. The current paper aims to investigate the effect of a new geometry "spline" introduced at the cup's rim corner to minimise stress concentration under edge loading. Three-dimensional finite element modelling of a metal-on-metal hip implant is developed, where contact pressure, von Mises stress, and strain are predicted for three spline geometries, ie, equivalent characteristic arc radius (R = 0.5, 1.0, and 1.5 mm) at four micro-separations (of 1.0, 1.5, 2.0, and 2.5 mm) simulating edge loading on the rim contact via the application of a constant vertical load of 3 kN. The efficacy of the spline is compared with that of circular arc and sharp corner (ie, no arc) geometries. Overall, the spline outperforms both sharp corner and circular arc in reducing contact pressure, stress, and strain. The benefit of the spline over the circular arc is quite promising at larger micro-separation but fairly marginal at smaller arc radius and micro-separation. The findings indicate that, as an alternative to the circular fillet, the spline can be considered a potential geometry to be incorporated at the rim corner of the cup.
Keyphrases
  • liquid chromatography
  • soft tissue
  • total hip arthroplasty
  • heat stress
  • mass spectrometry
  • risk assessment
  • physical activity
  • capillary electrophoresis