Density Embedding Method for Nanoscale Molecule-Metal Interfaces.
Xuecheng ShaoWenhui MiMichele PavanelloPublished in: The journal of physical chemistry letters (2022)
In this work, we extend the applicability of standard Kohn-Sham DFT (KS-DFT) to model realistically sized molecule-metal interfaces where the metal slabs venture into the tens of nanometers in size. Employing state-of-the-art noninteracting kinetic energy functionals, we describe metallic subsystems with orbital-free DFT and combine their electronic structure with molecular subsystems computed at the KS-DFT level resulting in a multiscale subsystem DFT method. The method reproduces within a few millielectronvolts the binding energy difference of water and carbon dioxide molecules adsorbed on the top and hollow sites of an Al(111) surface compared to KS-DFT of the combined supersystem. It is also robust for Born-Oppenheimer molecular dynamics simulations. Very large system sizes are approached with standard computing resources thanks to a parallelization scheme that avoids accumulation of memory at the gather-scatter stage. The results as presented are encouraging and open the door to ab initio simulations of realistically sized, mesoscopic molecule-metal interfaces.