Monocyte adhesion is a crucial step in the initial stage of atherosclerosis, and dysfunction of VE-cadherin has been reported to be involved in this process. Our group previously found that VE-cadherin and its binding protein, β-catenin, were modified by sialylation, and the levels of sialylation were decreased in pro-inflammatory cytokine-treated human umbilical vein EA.hy926 cells. In this study, we confirmed that the sugar chains of VE-cadherin were modified by N-acetylglucosaminyltransferase V (GnT-V). We showed that the levels of GnT-V and β1,6-N-acetylglucosamine on the VE-cadherin were reduced in the presence of interleukin-1β, whereas the level of monocyte transendothelial migration was increased. Moreover, the interaction between VE-cadherin and β-catenin was increased, accompanied by an increased accumulation of degradative VE-cadherin and cytoplasmic β-catenin, indicating impairment of cell-cell junctions after interleukin-1β treatment. Furthermore, GnT-V short hairpin RNA and overexpression analysis confirmed that glycosylation of VE-cadherin was modified by GnT-V in EA.hy926 cells, which contributed to the monocyte-endothelial adhesion process. Taken together, these results suggest that the function of VE-cadherin in facilitating monocyte adhesion might result from the decreasing GnT-V expression and disorder of GnT-V-catalysed N-glycosylation. Our study clarified the molecular mechanism of VE-cadherin in regulation of the monocyte adhesion process and provided new insights into the post-transcriptional modifications of VE-cadherin.
Keyphrases
- cell adhesion
- cell migration
- endothelial cells
- dendritic cells
- cell proliferation
- epithelial mesenchymal transition
- binding protein
- peripheral blood
- cardiovascular disease
- transcription factor
- biofilm formation
- oxidative stress
- single cell
- immune response
- newly diagnosed
- signaling pathway
- cell cycle arrest
- pi k akt
- pseudomonas aeruginosa
- smoking cessation
- data analysis
- candida albicans