Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows.
M S OrtegaA C DenicolJohn B ColeD J NullP J HansenPublished in: Animal genetics (2016)
We evaluated 69 SNPs in genes previously related to fertility and production traits for their relationship to daughter pregnancy rate (DPR), cow conception rate (CCR) and heifer conception rate (HCR) in a separate population of Holstein cows grouped according to their predicted transmitting ability (PTA) [≤-1 (n = 1287) and ≥1.5 (n = 1036)] for DPR. Genotyping was performed using Sequenom MassARRAY(®) . There were a total of 39 SNPs associated with the three fertility traits. The SNPs that explained the greater proportion of the genetic variation for DPR were COQ9 (3.2%), EPAS1 (1.0%), CAST (1.0%), C7H19orf60 (1.0%) and MRPL48 (1.0%); for CCR were GOLGA4 (2.4%), COQ9 (1.8%), EPAS1 (1.1%) and MRPL48 (0.8%); and for HCR were HSD17B7 (1.0%), AP3B1 (0.8%), HSD17B12 (0.7%) and CACNA1D (0.6%). Inclusion of 39 SNPs previously associated with DPR in the genetic evaluation system increased the reliability of PTA for DPR by 0.20%. Many of the genes represented by SNPs associated with fertility are involved in steroidogenesis or are regulated by steroids. A large proportion of SNPs previously associated with genetic merit for fertility in Holstein bulls maintained their association in a separate population of cows. The inclusion of these genes in genetic evaluation can improve reliabilities of genomic estimates for fertility.