Login / Signup

Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors.

Rita FirminoEmanuel CarlosJoana Vaz PintoJonas DeuermeierRodrigo MartinsElvira FortunatoPedro BarquinhaRita Branquinho
Published in: Nanomaterials (Basel, Switzerland) (2022)
Indium oxide (In 2 O 3 )-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped In 2 O 3 thin films and evaluating different annealing parameters on TCO's properties using a low environmental impact solvent. Optimized TCOs were achieved for 0.5 M% Hf-doped In 2 O 3 when produced at 400 °C, showing high transparency in the visible range of the spectrum, a bulk resistivity of 5.73 × 10 -2 Ω.cm, a mobility of 6.65 cm 2 /V.s, and a carrier concentration of 1.72 × 10 19 cm -3 . Then, these results were improved by using rapid thermal annealing (RTA) for 10 min at 600 °C, reaching a bulk resistivity of 3.95 × 10 -3 Ω.cm, a mobility of 21 cm 2 /V.s, and a carrier concentration of 7.98 × 10 19 cm -3 , in air. The present work brings solution-based TCOs a step closer to low-cost optoelectronic applications.
Keyphrases
  • quantum dots
  • low cost
  • highly efficient
  • oxide nanoparticles
  • particulate matter
  • metal organic framework
  • working memory
  • ionic liquid
  • acute heart failure
  • human health
  • sensitive detection