Login / Signup

Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans.

Muhammad UsmanAzka RehmanAmal Muhammad SaleemRabeea JawaidShi-Sub ByonSung-Hyun KimByoung-Dai LeeMin-Suk HeoYeong-Gil Shin
Published in: Sensors (Basel, Switzerland) (2022)
Accurate segmentation of mandibular canals in lower jaws is important in dental implantology. Medical experts manually determine the implant position and dimensions from 3D CT images to avoid damaging the mandibular nerve inside the canal. In this paper, we propose a novel dual-stage deep learning-based scheme for the automatic segmentation of the mandibular canal. In particular, we first enhance the CBCT scans by employing the novel histogram-based dynamic windowing scheme, which improves the visibility of mandibular canals. After enhancement, we designed 3D deeply supervised attention UNet architecture for localizing the Volumes Of Interest (VOIs), which contain the mandibular canals (i.e., left and right canals). Finally, we employed the Multi-Scale input Residual UNet (MSiR-UNet) architecture to segment the mandibular canals using VOIs accurately. The proposed method has been rigorously evaluated on 500 and 15 CBCT scans from our dataset and from the public dataset, respectively. The results demonstrate that our technique improves the existing performance of mandibular canal segmentation to a clinically acceptable range. Moreover, it is robust against the types of CBCT scans in terms of field of view.
Keyphrases