Feleucin-K3 Analogue with an α-(4-Pentenyl)-Ala Substitution at the Key Site Has More Potent Antimicrobial and Antibiofilm Activities in Vitro and in Vivo.
Xiaomin GuoJing RaoTiantian YanBangzhi ZhangWenle YangWangsheng SunJunqiu XiePublished in: ACS infectious diseases (2020)
The development of antimicrobial compounds is now regarded as an urgent problem. Antimicrobial peptides (AMPs) have great potential to become novel antimicrobial drugs. Feleucin-K3 is an α-helical cationic AMP isolated from the skin secretion of the Asian bombinid toad species Bombina orientalis and has antimicrobial activity. In our previous studies, amino acid scanning of Feleucin-K3 was performed to determine the key site affecting its activity. In this study, we investigated and synthesized a series of analogues that have either a natural or an unnatural hydrophobic amino acid substitution at the fourth amino acid residue of Feleucin-K3. Among these analogues, Feleucin-K59 (K59), which has an α-(4-pentenyl)-Ala substitution, was shown to have increased antimicrobial activity against both standard and drug-resistant strains of clinical common bacteria, improved stability, no hemolytic activity at antimicrobial concentrations, and no resistance. In addition, K59 has potent antibiofilm activity in vitro. More importantly, K59 showed better antimicrobial and antibiofilm activities against drug-resistant bacteria in in vivo experiments in mice than traditional antibiotics. In this preliminary study of the mechanism of action, we found that K59 could rapidly kill bacteria by a dual-action mechanism of disrupting the cell membrane and binding to intracellular DNA, thus making it difficult for bacteria to develop resistance.
Keyphrases
- drug resistant
- amino acid
- staphylococcus aureus
- multidrug resistant
- acinetobacter baumannii
- escherichia coli
- molecular docking
- risk assessment
- anti inflammatory
- skeletal muscle
- type diabetes
- pseudomonas aeruginosa
- insulin resistance
- climate change
- cystic fibrosis
- protein kinase
- reactive oxygen species
- electron microscopy
- high speed
- wild type