Login / Signup

Effect of curvature on wetting and dewetting of proboscises of butterflies and moths.

Chengqi ZhangCharles E BeardPeter H AdlerKonstantin G Kornev
Published in: Royal Society open science (2018)
Proboscises of butterflies are modelled as elliptical hollow fibres that can be bent into coils. The behaviour of coating films on such complex fibres is investigated to explain the remarkable ability of these insects to control liquid collection after dipping the proboscis into a flower or pressing and mopping it over a food source. By using a thin-film approximation with the air-liquid interface positioned almost parallel to the fibre surface, capillary pressure was estimated from the profile of the fibre surfaces supporting the films. The film is always unstable and the proboscis shape and movements have adaptive value in collecting fluid: coiling and bending of proboscises of butterflies and moths facilitate fluid collection. Some practical applications of this effect are discussed with regard to fibre engineering.
Keyphrases
  • room temperature
  • ionic liquid
  • atomic force microscopy
  • staphylococcus aureus
  • molecularly imprinted
  • high resolution
  • pseudomonas aeruginosa
  • cystic fibrosis
  • gold nanoparticles