Login / Signup

Shape-Encoded Functional Hydrogel Pellets for Multiplexed Detection of Pathogenic Bacteria Using a Gas Pressure Sensor.

Jizhou LiJinxia XueYu ZhangYong HeZhifeng Fu
Published in: ACS sensors (2022)
Gas pressure is a promising signal readout mode in point-of-care testing for its merits such as rapidity, simplicity, affordability, and no need for sophisticated instrumentation. Herein, a gas pressure sensor for multiplexed detection of pathogenic bacteria was developed on a hydrogel platform. Spherical and square hydrogel pellets prepared by cross-linking of sodium alginate were functionalized with nisin and ConA for the capture of Staphylococcus aureus and Escherichia coli O157:H7, respectively. By using the shape-encoded functional hydrogel pellets and aptamer-modified platinum-coated gold nanoparticles (Au@PtNPs), a dual-molecule recognition mode was established for rapid and specific detection of the two pathogenic bacteria. Au@PtNPs were applied as signal probes to efficiently catalyze the decomposition of H 2 O 2 for generating abundant O 2 , which was converted into an amplified gas pressure signal. In two closed containers, the significant gas pressure signals were monitored with a portable pressure meter to quantitate the two pathogenic bacteria. The sensor was successfully applied to detect the pathogenic bacteria in various environmental, biological, and food samples. Thus, the proof-of-principle work paves a new avenue for multiplexed detection of pathogenic bacteria with shape-encoded hydrogel pellets combined with gas pressure signal readout.
Keyphrases