Characterization of GH2 and GH42 β-galactosidases derived from bifidobacterial infant isolates.
Valentina AmbrogiFrancesca BottaciniJoyce O'SullivanMary O'Connell MotherwayCao LinqiuBarry SchoemakerMargriet SchotermanDouwe van SinderenPublished in: AMB Express (2019)
Bifidobacteria are among the first and most abundant bacterial colonizers of the gastrointestinal tract of (breast-fed) healthy infants. Their success of colonising the infant gut is believed to be, at least partly, due to their ability to metabolize available carbon sources by means of secreted or intracellular glycosyl hydrolases (GHs). Among these, β-galactosidases are particularly relevant as they allow bifidobacteria to grow on β-galactosyl-linked saccharidic substrates, which are present in copious amounts in the milk-based diet of their infant host (e.g. lactose and human milk oligosaccharides). In the present study we employed an in silico analysis to identify GH family 2 and 42 β-galactosidases encoded by typical infant-associated bifidobacteria. Comparative genome analysis followed by characterisation of selected β-galactosidases revealed how these GH2 and GH42 members are distributed among these infant-associated bifidobacteria, while their hydrolytic activity towards growth substrates commonly available in the infant gut were also assessed.