WO3/Conducting Polymer Heterojunction Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting.
Dasom JeonNayeong KimSanghyun BaeYujin HanJungki RyuPublished in: ACS applied materials & interfaces (2018)
An efficient and stable heterojunction photoanode for solar water oxidation was fabricated by hybridization of WO3 and conducting polymers (CPs). Organic/inorganic hybrid photoanodes were readily prepared by the electropolymerization of various CPs and the codeposition of tetraruthenium polyoxometalate (Ru4POM) water-oxidation catalysts (WOCs) on the surface of WO3. The deposition of CPs, especially polypyrrole (PPy) doped with Ru4POM (PPy:Ru4POM), resulted in a remarkably improved photoelectrochemical performance by the formation of a WO3/PPy p-n heterojunction and the incorporation of efficient Ru4POM WOCs. In addition, there was also a significant improvement in the photostability of the WO3-based photoanode after the deposition of the PPy:Ru4POM layer due to the suppression of the formation of hydrogen peroxide, which was responsible for corrosion. This study provides insight into the design and fabrication of novel photosynthetic and photocatalytic systems with excellent performance and stability through the hybridization of organic and inorganic materials.