Enhanced Microbial Ferrihydrite Reduction by Pyrogenic Carbon: Impact of Graphitic Structures.
Wentao YuChiheng ChuBaoliang ChenPublished in: Environmental science & technology (2021)
Electron-shuttling agents such as pyrogenic carbon (PC) can mediate long-distance electron transfer and play numerous key roles in aquatic and soil biogeochemical processes. The electron-shuttling capacity of PC relies on both the surface oxygen-containing functional groups and bulk graphitic structures. Although the impacts of oxygen-containing functional groups on the electron-shuttling performance of PC are well studied, there remains insufficient understanding on the function of graphitic structures. Here, we studied the functions of PC in mediating microbial ( Shewanella oneidensis MR-1) reduction of ferrihydrite, a classic and geochemically important soil redox process. The results show that PC enhanced microbial ferrihydrite reduction by 20-115% and the reduction rates increased with PC pyrolysis temperature increasing from 500 to 900 °C. For PC prepared at low temperature (500-600 °C), the electron-shuttling capacity of PC is mainly attributed to its oxygen-containing functional groups, as indicated by a 50-60% decline in the ferrihydrite reduction rate when PC was reduced under a H 2 atmosphere to remove surface oxygen-containing functional groups. In stark contrast, for PC prepared at higher temperature (700-900 °C), the formation of PC graphitic structures was enhanced, as suggested by the higher electrical conductivity; accordingly, the graphitic structure exhibits greater importance in shuttling electrons, as demonstrated by a minor decline (10-18%) in the ferrihydrite reduction rate after H 2 treatment of PC. This study provides new insights into the nonlinear and combined role of graphitic structures and oxygen-containing functional groups of PC in mediating electron transfer, where the pyrolysis temperature of PC acts as a key factor in determining the electron-shuttling pathways.