Login / Signup

Photonic-electronic integrated circuit-based coherent LiDAR engine.

Anton LukashchukHalil Kerim YildirimAndrea BancoraGrigory LihachevYang LiuZheru QiuXinru JiAndrey VoloshinSunil Ashok BhaveEdoardo CharbonTobias Jan Kippenberg
Published in: Nature communications (2024)
Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale integration of these systems has been challenged by stringent requirements on laser coherence, frequency agility, and the necessity for optical amplifiers. Here, we demonstrate a photonic-electronic LiDAR source composed of a micro-electronic-based high-voltage arbitrary waveform generator, a hybrid photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier. Importantly, all systems are realized in a wafer-scale manufacturing-compatible process comprising III-V semiconductors, silicon nitride photonic integrated circuits, and 130-nm SiGe bipolar complementary metal-oxide-semiconductor (CMOS) technology. We conducted ranging experiments at a 10-meter distance with a precision level of 10 cm and a 50 kHz acquisition rate. The laser source is turnkey and linearization-free, and it can be seamlessly integrated with existing focal plane and optical phased array LiDAR approaches.
Keyphrases
  • high speed
  • high resolution
  • quantum dots
  • photodynamic therapy
  • high frequency
  • bipolar disorder
  • mass spectrometry
  • gold nanoparticles
  • loop mediated isothermal amplification
  • energy transfer
  • ionic liquid
  • blood flow