Lightweight and Hydrophobic Three-Dimensional Wood-Derived Anisotropic Magnetic Porous Carbon for Highly Efficient Electromagnetic Interference Shielding.
Yun ZhengYujuan SongTong GaoSiyu YanHaihua HuFeng CaoYuping DuanXuefeng ZhangPublished in: ACS applied materials & interfaces (2020)
Constructing multifunctional characteristics toward advanced electromagnetic interference shielding materials in harsh environments has become a development trend. Herein, the wood-derived magnetic porous carbon composites with a highly ordered anisotropic porous architecture were successfully fabricated through a pyrolysis procedure. The three-dimensional porous skeleton inherited from the wood stock serves as an electrically conductive network and incorporates magnetic Ni nanoparticles homogeneously and firmly embedded within the carbon matrix that can further improve the electromagnetic attenuation capacity. The optimized Ni/porous carbon (PC) composite exhibits an exceptional electromagnetic interference (EMI) shielding effectiveness of 50.8 dB at the whole X band (8.2-12.4 GHz) with a low thickness (2 mm) and an ultralow density (0.288 g/cm3) and simultaneously possesses an extraordinary compressive strength (11.7 MPa) and a hydrophobic water contact angle (152.1°). Our study provides an alternative strategy to utilize green wood-based materials to design multifunctional EMI shielding composites.
Keyphrases