Login / Signup

Efficient Trilayer Phosphorescent Organic Light-Emitting Devices Without Electrode Modification Layer and Its Working Mechanism.

Xiaomei PengHaiwei FengJiaxin ZhangShihao LiuLetian ZhangWen-Fa Xie
Published in: Nanoscale research letters (2018)
At present, numerous functional layers are introduced to improve the carrier injection and balance the carrier transport in organic light-emitting devices (OLEDs). Although it may be a good way to enhance the efficiency of devices, the introduction of functional layers would also result in extra process and long manufacture period. Actually, with the enrichment of material system, many appropriate materials could be chosen to share two or even more functions in OLEDs. Here, via impedance spectroscopy and transient electroluminescence analysis, di-[4-(N,N-ditolyl-amino)-phenyl] cyclohexane (TAPC) and 4,7-diphenyl-1,10-phenanthroline (Bphen) are demonstrated to serve as carrier injection and transport layers simultaneously. As a result, efficient trilayer OLEDs are achieved with comparable performances to conventional multilayer devices. Further studies have also been carried out to analyze the recombination and quenching mechanisms in devices. TAPC can block electrons effectively, while Bphen avoids the accumulation of holes. It makes carriers in emitting layer become more balanced, resulting in the reduction of efficiency roll-off.
Keyphrases
  • light emitting
  • dna damage
  • computed tomography
  • magnetic resonance
  • oxidative stress
  • single molecule
  • energy transfer
  • mass spectrometry
  • contrast enhanced